

Deep Learning for Probabilistic Net-Load Forecasting

Soumya Kundu

Senior Engineer, PNNL

Adjunct Faculty, WSU-Tri Cities

Adjunct Faculty, U Vermont

Acknowledgment

• Supported by: US DOE SETO

US DOE OE

Collaborators: LLNL, NJIT,

Portland General Electric

SOLAR ENERGY

• PNNL Team:

Allison **Campbell**

Kaustav **Bhattacharjee**

Orestis **Vasios**

Andy **Reiman**

Need for Improved Net-Solar Forecast

Solar Power Forecast Uniform Improvement (%)

Source: Martinez-Anido et al, Solar Energy, 2016.

Study based on ISO-New England

- 1) Solar forecast improvement leads to increased savings
 - Fuel costs
 - Startup and shutdown costs
 - Variable operation and management (VO&M) costs
- 2) Higher solar penetration leads to higher savings
- 3) Decreasing marginal value (savings) of improving forecast

By 2030, WECC expects a 67% increase in renewables, with 73% increase in solar and 178% in BTM solar

**Comparing 2019/2020 installed capacity with 2030 WECC Anchor Data Set (ADS)

Need Methods for Improved Net-Load Forecast @Extreme Solar

Net-Load Forecast: Uncertainty vs. Variability

Tool to assess the impact of uncertainty and variability on balancing reserves

Source: Presentation by Nader Samaan at WECC PCM Data Work Group, 2020.

Net-Load Forecast: Uncertainty vs. Variability

Source: Presentation by Nader Samaan at WECC PCM Data Work Group, 2020.

Al/ML in Net-Load Forecast: Some Key Features

Uncertainty

Probabilistic models that can capture real-time unpredictable fluctuations

AI/ML in Net-Load **Forecasting**

Variability

Deep models that can capture gradual short-term change in output

Deployability

Deep models need to be fast deployed in limited data environment

Explainability

AI/ML model outputs must be interpretable to gain trust of human operators

What We Cover Today

- Data Availability vs. Model Complexity
 - Architecture 1: Complex Model, High-Resolution (Larger) Dataset
 - Deployable AI/ML via Transfer Learning
 - Architecture 2: Simpler Model, Low-Resolution (Smaller) Dataset
- Explainability of Al/ML Models
 - Trust-Augmented AI/ML via Interactive Visual Analytics

Architecture 1: kPF-AE-LSTM (a VRNN model)

A Variational Recurrent Neural Network (VRNN) model that combines an Autoencoder and a Long-Short-Term-Memory (LSTM) network with a kPF Algorithm (kPF-AE-LSTM)

Architecture 1: Comparison with Benchmark

Model	Training Loss	Train time /epoch (s)	MAE (kW)	Norm MAE (%)	MAPE (%)	APE IQR (%)	PBB (%)	CRPS
PCLSTM	CRPS	4.1	9.1	10.7	11.2	7.6	74.57	0.25
PCLSTM	NegLL	4	11.2	13.1	13.3	6.9	73.23	0.39
CLSTM	MAE	4.1	10.8	12.6	13.4	13.3	NA	NA
VRNN	Recon+NegLL+Pred error	7.8	5.6	6.5	6.5	4.1	93.23	0.13
VRNN	Sequential training	4	5.6	6.4	6.6	4.1	93.43	0.12

- The proposed model outperforms the benchmarks by ~30% in forecast accuracy
- While still achieving the best-in-class training efficiency (~4s)

CRPS = Continuous Ranked Probability Score, NegLL = Negative Log-Likelihood, MAE = Mean Absolute Error, PBB = Probability between Bounds, IQR = Inter-Quartile Range

Deployable AI/ML via Transfer Learning

Transferring model trained on 20% solar case to 30% solar case

Only 25% of data used in training transferred model

Acceptable forecast accuracy with 6x speed-up in training time

	Data Size (# samples)		Training Time (sec/epoch)
30% BTM (Transferred)	8,800	2.15%	0.56
30% BTM (Fresh Trained)	35,040	1.57%	3.35

***Seems to work only within the same (similar) weather zone

Architecture 2: Simpler Model, Low-Res Data

Architecture 2 (w/o AE)

Simpler model (w/o AE) outperforms AEbased model by achieving lower CRPS in low-resolution data environment

Architecture 2: Simpler Model, Low-Res Data

Architecture 2 (w/o AE)

In high-resolution data, simpler model (w/o AE) expectedly does worse by achieving higher CRPS than AE-based model

What We Cover Today

- Data Availability vs. Model Complexity
 - Architecture 1: Complex Model, High-Resolution (Larger) Dataset
 - Deployable AI/ML via Transfer Learning
 - Architecture 2: Simpler Model, Low-Resolution (Smaller) Dataset
- Explainability of Al/ML Models
 - Trust-Augmented AI/ML via Interactive Visual Analytics

Forte: Interactive Tool for Net-Load Forecasting

Forte: Interactive Tool for Net-Load Forecasting

Run experiments to perform model sensitivity to input data MAE Heatmap | Temperature 0.3 Sensitivity Analysis View Jobs Create Job Jan Humidity () Apparent Power Feb Temperature Input Variables: Apr Start Date Dates: Start Date End Date May Months: Months Number of Observations Noise Level: None Oct Nov Noise Direction: ○ Bidirectional ○ Positive Direction ○ Negative Direction 5 10 Noise (%) Name: Name **Experiment:** Sensitivity to temperature **Observation:** Highest sensitivity in Jan/Jul, lowest in April/May **Description:** Description **Explanation:** Extreme weather in Jan and Jul drives energy demand, causing high sensitivity. In contrast, milder weather in April/May leads to low temperature sensitivity of net-load

More Information

- Forte Interface is available on GitHub: https://github.com/pnnl/Forte
- Publications:
 - Sen, Chakraborty, Kundu, et al. "KPF-AE-LSTM: A Deep Probabilistic Model for Net-Load Forecasting in High Solar Scenarios." arXiv preprint arXiv:2203.04401 (2022).
 - Bhattacharjee, Dasgupta, Kundu, Chakraborty. "Forte: An Interactive Visual Analytic Tool for Trust-Augmented Net-Load Forecasting", submitted to ISGT (2024).

Thank you

Soumya Kundu soumya.kundu@pnnl.gov 509 375 2431

